· 4 years ago · Aug 04, 2021, 07:58 AM
1[{'first_name': 'Zhonghua(Helen)', 'last_name': 'Gao', 'skills': [{'skill': 'SQL', 'years_experience': None}, {'skill': 'Python', 'years_experience': None}, {'skill': 'SAS', 'years_experience': None}, {'skill': 'PLC Programming', 'years_experience': None}, {'skill': 'R', 'years_experience': None}, {'skill': 'Tableau', 'years_experience': None}, {'skill': 'Microsoft Office', 'years_experience': None}, {'skill': 'Gurobi', 'years_experience': None}, {'skill': 'HTML', 'years_experience': None}, {'skill': 'CSS', 'years_experience': None}, {'skill': 'Linux', 'years_experience': None}, {'skill': 'JavaScript', 'years_experience': None}, {'skill': 'MicroStrategy Reporting', 'years_experience': None}], 'employment_history': [{'start_date': {'YearMonth': '2016-01'}, 'end_date': {'StringDate': 'current'}, 'position': 'Sr Data Scientist', 'description': '•\tDesign model for finding lookalikes based on seed profile based on demographic attributes for both B2B and B2C on Google Cloud Product AI platform \n\n•\tDesign and Build an audio-base app for helping people find their favorite movies by using Google Cloud Product - Dialogflow\n\n•\tDesigned, created and implemented a system for email, digital & addressable TV advertising personalized VOD movie recommendations to increase revenue by algorithmically processing movie meta-data and subscribers’ movie viewing histories from various sources using tools such as SQL (data acquisition), Python (data analytic tool), Openstack (algorithm/data processing) and Redshift (RDBMS big data cloud database).\n\n•\tDefined the trade area of our client by using 3rd-party geo-location smartphone visit logs and geographic residential and work information using Python and AWS S3 and visualized the trade area using a web-based map using APIs. Assessed the effectiveness of advertising to the trade area by comparing the subsequent visit rates among those exposed vs. those who were unexposed by algorithmically matching similar exposed and unexposed users with Python.\n\n•\tTo inform media spend strategy, used R (algorthims) and Openstack (algorithm/data processing) to create a hierarchical Bayes media mix model to forecast how many subscribers various media strategies could yield by algorithmically processing time series data from various sources, such as sales, media spend, price, promotions, economic conditions, weather, etc. Evaluated various variables using Tableau.\n\n•\tA/B Test\n\n•\tPredict target audience for our clients by using SQL and Python\n\n•\tRecommended networks and programs to our clients with SQL\n\n•\tReport addressable campaigns and matchback analysis with Tableau, Excel and PowerPoint\n\n•\tTrain my whole team about SQL\n \n \n …\n \n see more', 'employer_name': 'Altice USA', 'current_employer': True}, {'start_date': {'YearMonth': '2015-01'}, 'end_date': {'YearMonth': '2016-12'}, 'position': 'Data Analyst Scientist', 'description': 'Key Working Area Highlights:\n•\tAudience Analysis\nFound audience for Live, DVR+3, DVR+5, DVR+7, VOD+3, VOD+5 and VOD+7. Grabbed new and overlap audience for each episode/season of target programs/networks. Analyzed audience for target programs. Predicted audience for new programs. \n•\tNetwork and Program Recommendation for Linear TV\nBased on the target audience, found the count and duration for each network/program. Recommended networks and programs for the campaign by using LIVE/DVR/VOD data. \n•\tROI Analysis\nFound data before and after campaign. Analyzed how much lift between exposed and unexposed by using Live Data. Used tableau to visualize the data.\n•\tMinutes by Minutest Analysis\nIngested minutes or seconds data to do minutes/second by minutes/second analysis for various games or events. \n•\tLook Alike Modeling\nDesigned models to predict potential customers based on the tuning behavior and demographic information.\n•\tAB Test\nPerformed AB test for exposed and unexposed group in order to make sure the importance of advertisement for lift. \n•\tDesigned Optimized Model to Maximize Reach\nBased on the available of spots of each daypart, designed the optimized model to maximize reach for campaigns. \n•\tSQL Boot Camp\nOrganized and taught in a boot camp of SQL introduction across multiple groups.\n \n \n …\n \n see more', 'employer_name': 'Cablevision', 'current_employer': False}, {'start_date': {'YearMonth': '2014-01'}, 'end_date': {'YearMonth': '2014-12'}, 'position': 'Graduate Research Assistant', 'description': '•\tBuild supply chain Logistic Network model with Gurobi.\n•\tRealized the model by using Python and Gurobi.\n•\tVerify result by using GAMS or Excel\n•\tVisualize the result by applying Python.\n \n \n …\n \n see more', 'employer_name': 'Stevens Institute of Technology', 'current_employer': False}, {'start_date': {'YearMonth': '2014-06'}, 'end_date': {'YearMonth': '2014-08'}, 'position': 'Data Analyst Intern', 'description': '•\tAttended SCRUM daily by using Agile method.\n•\tTested data profiled data with SQL. \n•\tCreated business reports by using Tableau.\n•\tPresented the project to VP and CIO.\n \n \n …\n \n see more', 'employer_name': 'Centerlight Health System', 'current_employer': False}, {'start_date': {'YearMonth': '2013-04'}, 'end_date': {'YearMonth': '2013-05'}, 'position': 'Web Developer Intern', 'description': '•\tTested every function of Star Platform. \n•\tPointed problems of Star Platform.\n•\tFixed the problems and developed new functions for the front end with html and JavaScript and \n jQuery.\n \n \n …\n \n see more', 'employer_name': 'Brown Brothers Harriman', 'current_employer': False}, {'start_date': {'YearMonth': '2012-09'}, 'end_date': {'YearMonth': '2013-02'}, 'position': 'Graduate Students Assistant', 'description': '•\tEntered applicants’ documents in Stevens Institute of Technology System.\n•\tOrganized applicants files. \n•\tAnswer calls and helped staffs deal with routine\n \n \n …\n \n see more', 'employer_name': 'Stevens Institute of Technology', 'current_employer': False}, {'start_date': {'YearMonth': '2010-08'}, 'end_date': {'YearMonth': '2011-07'}, 'position': 'Assistant Director', 'description': '•\tAnalyzed Real-time data acquisition (include Voltage and Current).\n•\tRecorded data about current. \n•\tAnswered the clients’ phone calls.\n \n \n …\n \n see more', 'employer_name': 'State Grid Brasil Transmissão', 'current_employer': False}], 'education_history': [{'start_date': {'YearMonth': '2019-Jan'}, 'end_date': {'YearMonth': '2019-Jan'}, 'institution_name': 'Wharton Online', 'degree_type': 'Business Analytics', 'degree_major': 'Certification', 'degree_attendance': {'StartDate': {'YearMonth': '2019-Jan'}, 'EndDate': {'YearMonth': '2019-Jan'}}}, {'start_date': {'YearMonth': '2014-Jan'}, 'end_date': {'YearMonth': '2015-Jan'}, 'institution_name': 'Stevens Institute of Technology', 'degree_type': 'Business Intelligence and Analytics', 'degree_major': "Master's degree", 'degree_attendance': {'StartDate': {'YearMonth': '2014-Jan'}, 'EndDate': {'YearMonth': '2015-Jan'}}}, {'start_date': {'YearMonth': '2010-Jan'}, 'end_date': {'YearMonth': '2013-Jan'}, 'institution_name': 'Stevens Institute of Technology', 'degree_type': 'Electrical and Computer Engineering', 'degree_major': "Master's degree", 'degree_attendance': {'StartDate': {'YearMonth': '2010-Jan'}, 'EndDate': {'YearMonth': '2013-Jan'}}}, {'start_date': {'YearMonth': '2006-Jan'}, 'end_date': {'YearMonth': '2010-Jan'}, 'institution_name': 'Tianjin University of Technology', 'degree_type': 'Mechatronics, Robotics, and Automation Engineering', 'degree_major': "Bachelor's degree", 'degree_attendance': {'StartDate': {'YearMonth': '2006-Jan'}, 'EndDate': {'YearMonth': '2010-Jan'}}}], 'achievements': {'achievements': [], 'speaking_events': [], 'patents': [], 'publications': [], 'licenses_and_certifications': []}, 'city': 'Lyndhurst', 'state': 'New Jersey', 'country': 'United States'}, {'first_name': 'Yev (Yevgeniy)', 'last_name': 'Guyduy', 'skills': [{'skill': 'Machine Learning', 'years_experience': None}, {'skill': 'New Business Development', 'years_experience': None}, {'skill': 'Process Improvement', 'years_experience': None}, {'skill': 'Operations Management', 'years_experience': None}, {'skill': 'Supply Chain Management', 'years_experience': None}, {'skill': 'Data Analysis', 'years_experience': None}, {'skill': 'Research', 'years_experience': None}, {'skill': 'Industrial Engineering', 'years_experience': None}, {'skill': 'Marketing Strategy', 'years_experience': None}, {'skill': 'Online Marketing', 'years_experience': None}, {'skill': 'Business Intelligence', 'years_experience': None}, {'skill': 'Extract, Transform, Load (ETL)', 'years_experience': None}, {'skill': 'Search Engine Optimization (SEO)', 'years_experience': None}, {'skill': 'Web Applications', 'years_experience': None}, {'skill': 'Computer Vision', 'years_experience': None}, {'skill': 'Python', 'years_experience': None}, {'skill': 'SQL', 'years_experience': None}, {'skill': 'Tableau', 'years_experience': None}, {'skill': 'Visual Basic for Applications (VBA)', 'years_experience': None}, {'skill': 'MongoDB', 'years_experience': None}, {'skill': 'Flask', 'years_experience': None}, {'skill': 'Git', 'years_experience': None}, {'skill': 'Apache Airflow', 'years_experience': None}, {'skill': 'Google Cloud Platform (GCP)', 'years_experience': None}, {'skill': 'Docker', 'years_experience': None}, {'skill': 'Keras', 'years_experience': None}, {'skill': 'PyTorch', 'years_experience': None}, {'skill': 'REST APIs', 'years_experience': None}, {'skill': 'Team Building', 'years_experience': None}, {'skill': 'Presentations', 'years_experience': None}, {'skill': 'Management', 'years_experience': None}, {'skill': 'Web Scraping', 'years_experience': None}, {'skill': 'Natural Language Processing', 'years_experience': None}, {'skill': 'Geospatial Intelligence', 'years_experience': None}, {'skill': 'Data Engineering', 'years_experience': None}], 'employment_history': [{'start_date': {'YearMonth': '2020-04'}, 'end_date': {'StringDate': 'current'}, 'position': 'Senior Data Scientist', 'description': None, 'employer_name': 'Canon USA', 'current_employer': True}, {'start_date': {'YearMonth': '2017-06'}, 'end_date': {'YearMonth': '2020-03'}, 'position': 'Data Scientist', 'description': None, 'employer_name': 'Canon USA', 'current_employer': False}, {'start_date': {'YearMonth': '2017-05'}, 'end_date': {'YearMonth': '2017-06'}, 'position': 'Business Intelligence Analyst', 'description': None, 'employer_name': 'Canon USA', 'current_employer': False}, {'start_date': {'YearMonth': '2016-08'}, 'end_date': {'YearMonth': '2017-05'}, 'position': 'Marketing Strategy and Development Specialist', 'description': None, 'employer_name': 'Purolator Inc.', 'current_employer': False}, {'start_date': {'YearMonth': '2015-06'}, 'end_date': {'YearMonth': '2016-07'}, 'position': 'Marketing Strategy and Development Analyst', 'description': None, 'employer_name': 'Purolator Inc.', 'current_employer': False}, {'start_date': {'YearMonth': '2013-01'}, 'end_date': {'YearMonth': '2015-06'}, 'position': 'Marketing Analyst', 'description': None, 'employer_name': 'Purolator Inc.', 'current_employer': False}, {'start_date': {'YearMonth': '2012-04'}, 'end_date': {'YearMonth': '2013-01'}, 'position': 'Support Specialist', 'description': None, 'employer_name': 'ALA Scientific Instruments Inc.', 'current_employer': False}, {'start_date': {'YearMonth': '2010-09'}, 'end_date': {'YearMonth': '2011-01'}, 'position': 'Ad Sales Intern', 'description': None, 'employer_name': 'Discovery Communications', 'current_employer': False}, {'start_date': {'YearMonth': '2008-05'}, 'end_date': {'YearMonth': '2008-09'}, 'position': 'Assembly', 'description': None, 'employer_name': 'Altronix Corp', 'current_employer': False}, {'start_date': {'YearMonth': '2006-09'}, 'end_date': {'YearMonth': '2007-05'}, 'position': 'Crew Member', 'description': None, 'employer_name': "Dunkin'\u200b Brands", 'current_employer': False}], 'education_history': [{'start_date': {'YearMonth': '2008-Jan'}, 'end_date': {'YearMonth': '2011-Jan'}, 'institution_name': 'Hofstra University', 'degree_type': 'Marketing', 'degree_major': 'Bachelor of Business Administration (B.B.A.)', 'degree_attendance': {'StartDate': {'YearMonth': '2008-Jan'}, 'EndDate': {'YearMonth': '2011-Jan'}}}, {'start_date': {'YearMonth': '2008-Jan'}, 'end_date': {'YearMonth': '2011-Jan'}, 'institution_name': 'Hofstra University', 'degree_type': 'International Business', 'degree_major': 'Bachelor of Business Administration (B.B.A.)', 'degree_attendance': {'StartDate': {'YearMonth': '2008-Jan'}, 'EndDate': {'YearMonth': '2011-Jan'}}}, {'start_date': {'YearMonth': '2008-Jan'}, 'end_date': {'YearMonth': '2011-Jan'}, 'institution_name': 'Hofstra University', 'degree_type': 'Honors College Graduate', 'degree_major': None, 'degree_attendance': {'StartDate': {'YearMonth': '2008-Jan'}, 'EndDate': {'YearMonth': '2011-Jan'}}}, {'start_date': None, 'end_date': None, 'institution_name': 'Kaggle', 'degree_type': None, 'degree_major': None, 'degree_attendance': {'StartDate': None, 'EndDate': None}}, {'start_date': None, 'end_date': None, 'institution_name': 'Stack Overflow', 'degree_type': None, 'degree_major': None, 'degree_attendance': {'StartDate': None, 'EndDate': None}}, {'start_date': None, 'end_date': None, 'institution_name': 'Khan Academy', 'degree_type': None, 'degree_major': None, 'degree_attendance': {'StartDate': None, 'EndDate': None}}], 'achievements': {'achievements': [{'Description': 'Circle of Excellence'}], 'speaking_events': [], 'patents': [], 'publications': [], 'licenses_and_certifications': [{'Name': 'Data Engineering with Google Cloud'}, {'Name': 'Google Cloud Platform'}, {'Name': 'Data Scientist with Python'}, {'Name': 'Python Path'}, {'Name': 'Python for Informatics'}, {'Name': 'Search Engine Optimization (SEO)'}, {'Name': 'Social Media Marketing'}, {'Name': 'Digital Marketing'}, {'Name': 'Improving Business Finances and Operations'}]}, 'city': 'New York City Metropolitan Area', 'state': None, 'country': 'United States'}, {'first_name': 'Eddie', 'last_name': 'D.', 'skills': [{'skill': 'MySQL', 'years_experience': None}, {'skill': 'Machine Learning', 'years_experience': None}, {'skill': 'Python', 'years_experience': None}, {'skill': 'Deep Learning', 'years_experience': None}, {'skill': 'Microsoft Power BI', 'years_experience': None}, {'skill': 'Docker Products', 'years_experience': None}, {'skill': 'MapReduce', 'years_experience': None}, {'skill': 'MongoDB', 'years_experience': None}, {'skill': 'PostgreSQL', 'years_experience': None}, {'skill': 'Databricks', 'years_experience': None}, {'skill': 'Git', 'years_experience': None}, {'skill': 'AWS', 'years_experience': None}, {'skill': 'Hadoop', 'years_experience': None}, {'skill': 'Spark', 'years_experience': None}, {'skill': 'SparkSQL', 'years_experience': None}, {'skill': 'Hive', 'years_experience': None}], 'employment_history': [{'start_date': {'YearMonth': '2019-03'}, 'end_date': {'StringDate': 'current'}, 'position': 'Senior Data Scientist', 'description': '•\tData Analysis: Translating numbers into meaningful facts to help them make better decisions; perform cleansing, manipulation, analysis, and visualization of client data; generated data visualization dashboard using Tableau10.3 and Python library Matplotlib/ Seaborn\n\n•\tData Preprocessing: Collected 60 GB data through API, built Data Processing Pipeline and performed data cleaning, features scaling, features engineering using Pandas and NumPy packages; built streaming data ETL pipeline using Spark Streaming and Kafka\n\n•\tNLP (Natural Language Processing) Techniques: Built projects utilizing NLP knowledge including text mining, regex, bag of words, n-gram, TF-IDF, Word2Vec, GloVe, encoder-decoder networks, attention, BERT, PCA, Bi-LSTMs, cosine similarity, NER, and information extraction\n\n•\tLog Classification: Extracted features from modem logs (semi-structured) based on business sense; applied feature selection techniques based on embedded methods (tree importance) to get most important features from IVR data; trained Ensemble Method(Bagging: Random Forest, Boosting: XGBoost) to find out each failure label, then built content-based recommender to recommend the solution to customers\n\n•\tRecommendation Algorithm: Designed User-Based and Item-Based Collaborative-Filtering based on Pearson correlation between users/items; hybridized content-based recommender with CF\n\n•\tModel Evaluation: Measured model performance using Confusion Matrix, Cross-entropy, AUC-ROC curve; and identified accuracy, precision, recall and F1 score using Confusion Matrix; used GridSearch with Cross-Validation to tune hyperparameters and evaluate a model for each combination of algorithm parameters specified in a grid, finally we increased accuracy around 5%\n\n•\tAgile Project Coordinator: Pitched machine learning ideas, suggested, collected and synthesized business requirements based on use cases, created an effective roadmap towards the deployment of a production-level machine learning application\n \n \n …\n \n see more', 'employer_name': 'Altice USA', 'current_employer': True}, {'start_date': {'YearMonth': '2017-09'}, 'end_date': {'YearMonth': '2019-02'}, 'position': 'Data Scientist', 'description': '•\tStrategies Building: Being a member of a five-person group charged with building resume-parsing systems using NLP related strategies for recruiting platform based on machine learning and deep learning networks\n\n•\tImplementation: Transformed resume from PDF, Word, and other forms to txt file using Tika; Created corpus word list including segment keyword list, university list and company list etc.; searched segment keywords and created bounding box near keyword using Hierarchical Layout, then stored each sentence into respective segment; performed feature extraction by creating segment specific feature list and searched main feature in the respective segment\n\n•\tMachine Learning/Deep Learning: Developed machine learning algorithms of Named Entities Recognition (NER), such as recognizing candidate’s name and company’s name; used Support Vector Machine and Naïve Bayes Classifier to better generate segmentation result; applied Regular Expression for information extraction, such as extracting email address; implemented Deep learning multi-class classification using RNN and CNN networks; designed Confusion Matrix and calculated precision, recall and f1 score to measure model performance, the accuracy reached to 95.5%\n\n•\tData Engineering: Constructed data pipeline on AWS by deploying Linux environment to use Jupyter notebook to query and clean data, enabling data pipeline ETL, and preparing machine-learning oriented features table; applied cloud technology (Google Cloud, AWS, and Databricks) to synchronize and deploy Parse Server (Docker Container) on AWS through EC2; increased time efficiency and computational efficiency by 20 times when processing one million resume files\n\n•\tInterpersonal Communication and Leadership: Served as group leader for all interns to develop an adaptive information extraction algorithm based on about 100 academic papers; collaborated with product managers, marketing analytics, and front-end engineers to deliver features\n \n \n …\n \n see more', 'employer_name': 'Entropy Lab', 'current_employer': False}, {'start_date': {'YearMonth': '2015-01'}, 'end_date': {'YearMonth': '2016-06'}, 'position': 'Machine Learning Engineer', 'description': '•\tProject Management: Analyzed and then effectively strategized in regard to the project goal, requirement, resources and deadlines; clear communicated problems and process with the upper management team\n\n•\tData Preprocessing/Visualization: Collected 100,313 post from users for different topics including features like user_id, posts, create_date etc.; built Data Preprocessing Pipeline and performed data cleaning, features scaling, features extraction using Pandas and NumPy; used Matplotlib, Seaborn in Python to visualize the data and performed Featuring Engineering such as detecting outliers, missing value and interpreting variables; applied extensive regular expressions to extract hashtags, URLs and emotions\n\n•\tData Science Pipeline: Worked in all phases of Data Science Pipeline like Feature Selection, Feature Engineering, Data Modeling, Developing Tools, Validation, Data Visualizations and Model Evaluation; implemented classification algorithms (Logistic Regression, Random Forests, XGBoost, SVM, KNN) to return a positive, negative, or neutral post; extracted posts and created WordCloud to determine the most frequent words; created a graph to see the correlation between the tweets of the sentiment analysis; used pipeline to manage the preprocessing steps in one step \n\n•\tModel Evaluation: Evaluated classification models using AUC-ROC curve and Confusion Matrix and identified accuracy, precision, recall and F1 score\n\n•\tBusiness Improvement: Generated weekly report automatically containing regression for prediction on user’s activities and visualization for acquisition and behavior; targeting and connecting potential customers (Increased 50% customer base) by analyzing unstructured data using Text Mining; designed and developed specific databases (MySQL)for collection, tracking, and reporting of current data\n \n \n …\n \n see more', 'employer_name': 'Sina Com Technology (China) Co. LTD', 'current_employer': False}, {'start_date': {'YearMonth': '2013-09'}, 'end_date': {'YearMonth': '2014-12'}, 'position': 'Data Analyst (Python & SQL)', 'description': '•\tDatabase: Created database program in SQL server to manipulate data accumulated by oil transactions; responsible for writing SQL statements and stored procedures using PL/SQL\n\n•\tOil Data Visualization: Performed exploratory data analysis like statistical calculation, data cleaning and data visualizations using NumPy, Pandas and Matplotlib; created interactive Dashboards on desktop platform to visualize the data by using Power BI in MS Excel and Tableau; developed R-Shiny app to highlight Bayesian analysis and performed visualizations with ggplot2 using R; developed comprehensive reports and charts to present data and guide investment strategies\n\n•\tWeb Development: Created the fully functional website by using Django Rest Framework and successfully deployed on Server, maintain features including sales search, oil fields filter and company email service; improved the coding standards, code reuse, and performance of the extend application by making effective use of various design patterns\n \n \n …\n \n see more', 'employer_name': 'China Petroleum Technology & Development Corporation', 'current_employer': False}], 'education_history': [{'start_date': None, 'end_date': None, 'institution_name': 'Stony Brook University', 'degree_type': 'Management Information Systems, General', 'degree_major': "Master's degree", 'degree_attendance': {'StartDate': None, 'EndDate': None}}], 'achievements': {'achievements': [], 'speaking_events': [], 'patents': [], 'publications': [], 'licenses_and_certifications': []}, 'city': 'New York City Metropolitan Area', 'state': None, 'country': 'United States'}, {'first_name': 'Luke', 'last_name': 'Li', 'skills': [{'skill': 'Predictive Modeling', 'years_experience': None}, {'skill': 'SQL', 'years_experience': None}, {'skill': 'R', 'years_experience': None}, {'skill': 'Data Analysis', 'years_experience': None}, {'skill': 'data mining', 'years_experience': None}, {'skill': 'Database Marketing', 'years_experience': None}, {'skill': 'Modeling', 'years_experience': None}, {'skill': 'Analysis', 'years_experience': None}, {'skill': 'Big Data', 'years_experience': None}, {'skill': 'Customer Relationship Management (CRM)', 'years_experience': None}, {'skill': 'Business Analysis', 'years_experience': None}, {'skill': 'Pivot Tables', 'years_experience': None}, {'skill': 'Valuation', 'years_experience': None}, {'skill': 'Financial Modeling', 'years_experience': None}, {'skill': 'Python', 'years_experience': None}, {'skill': 'Microsoft Office', 'years_experience': None}, {'skill': 'Microsoft Excel', 'years_experience': None}, {'skill': 'SAS', 'years_experience': None}, {'skill': 'PowerPoint', 'years_experience': None}, {'skill': 'Business Objects', 'years_experience': None}, {'skill': 'Tableau', 'years_experience': None}, {'skill': 'Management', 'years_experience': None}, {'skill': 'Decision Trees', 'years_experience': None}, {'skill': 'Teradata', 'years_experience': None}], 'employment_history': [{'start_date': {'YearMonth': '2014-11'}, 'end_date': {'StringDate': 'current'}, 'position': 'Senior Data Scientist', 'description': '\uf0b7 Manage all analytics of direct mail mktg program for Fortune 100 client’s financial & insurance offerings\n\uf0b7 Help grow account from inception to 8MM mail, 12k accts booked per year across three different products\n\uf0b7 Built response model that raised response by 36% and approval model that improved approval by 19%\n\uf0b7 Warehouse and quality control data for analytical and model building purposes\n\uf0b7 Liaison with client to deliver ad-hoc analysis to improve program performance\n\uf0b7 Create and maintain a master client database for model building and analysis\n\uf0b7 Wrote script to forecast response rates and other key metrics using Python neural network algorithm\n\uf0b7 Proficient with multiple data mining algorithms including GBM and Regularized Regression Analysis\n\uf0b7 Delivered elegant solution to building a response model for a separate client that does not do random mail\n\uf0b7 Enhanced persistent ID matching and demographic variables through optimization models\n\uf0b7 Built response and attrition models that improved bookings by 12% for client that books 27k orders/year\n\uf0b7 Designed A/B tests with volume estimates to read differential performance with significance\n\uf0b7 Developed results matching code, response curve, and automated report creation process for delivery of campaign results\n \n \n …\n \n see more', 'employer_name': 'DataLab USA', 'current_employer': True}, {'start_date': {'YearMonth': '2012-12'}, 'end_date': {'YearMonth': '2014-11'}, 'position': 'Senior Business Analyst', 'description': 'Responsible for managing mailing strategy to customers who are new to credit or have invalid credit scores\n•\tIntegrated data on response, prospects, creative strategy, and other factors to recommend optimal mailing strategy for a business that books 500k accounts per year\n•\tAnalyzed and justified marketing a rewards card to customers who are new to credit, resulting in an increase of $10M in NPV and 25k new accounts booked per year\n•\tExpanded mailings to people with prime credit scores by removing suppressions and altering segmentation, resulting in 150k new accounts booked per year\n•\tIncreased online approvals of customers with invalid credit scores using updated valuations and optimized credit line policy, resulting in $3.7M NPV increase and 183k new accounts booked annually\n•\tSimplified disclosure statements in order to make them easier to understand for customers, resulting in improved customer experience and reduced operational complexity\n•\tCreated financial projections for marketing expenditure, account growth, and NPV generation across business segments\n•\tCollaborated with operations, brand, and IT partners through monthly forums and one-off meetings to deliver on business strategy and bring decisions to market\n•\tExplored ways to increase approvals of people who are deeply subprime, including expanding secured card marketing and offering alternative products to those declined\n•\tDelivered on corporate mission to “help customers use credit wisely” by changing how Autopay works online, resulting in increased customer pay-down\n•\tPresented changes in response rates and recommendations on brand strategy to senior leaders\n•\tMonitored and presented on marketing metrics at monthly business review meetings\n•\tDeveloped keen sense of business and credit intuition through credit analysis work\n \n \n …\n \n see more', 'employer_name': 'Capital One', 'current_employer': False}, {'start_date': {'YearMonth': '2011-07'}, 'end_date': {'YearMonth': '2012-12'}, 'position': 'Business Analyst', 'description': 'Managed customer management valuation models that drives core business decisions\n•\tExecuted account level valuation models including updates, monitoring, refitting, and onboarding\n•\tBuilt “Cost of Rewards” model that predicts statement level rewards cost that is still in use today\n•\tCreated SQL scripts to pull entire input dataset for customer management valuations model\n•\tAwarded recognition for attention to data quality integrity and delivery of cost of rewards model\n•\tDirected team organization through holding of office hours, ownership of weekly team meetings, and creation/maintenance of team website\n•\tCompleted sensitivity analysis on models as part of internal audit\n•\tImproved monitoring process by partnering with data analyst team to roll out new enhancements to model monitoring views\n•\tOperated under strict adherence to legal and financial regulations such as BASEL II, FACTA, and CARD ACT\n•\tDeveloped strong technical, valuations, modeling, and data analysis skills through model-intensive projects\n \n \n …\n \n see more', 'employer_name': 'Capital One', 'current_employer': False}], 'education_history': [{'start_date': {'YearMonth': '2007-Jan'}, 'end_date': {'YearMonth': '2011-Jan'}, 'institution_name': 'Duke University', 'degree_type': 'Biomedical Engineering', 'degree_major': 'BS', 'degree_attendance': {'StartDate': {'YearMonth': '2007-Jan'}, 'EndDate': {'YearMonth': '2011-Jan'}}}], 'achievements': {'achievements': [], 'speaking_events': [], 'patents': [], 'publications': [], 'licenses_and_certifications': []}, 'city': 'Germantown', 'state': 'Maryland', 'country': 'United States'}, {'first_name': 'Sudhakar R', 'last_name': 'Athuru', 'skills': [{'skill': 'Data Science', 'years_experience': None}, {'skill': 'Big Data Analytics', 'years_experience': None}, {'skill': 'Software Development', 'years_experience': None}, {'skill': 'Data Analysis', 'years_experience': None}, {'skill': 'Machine Learning', 'years_experience': None}, {'skill': 'SAS', 'years_experience': None}, {'skill': 'R', 'years_experience': None}, {'skill': 'Python', 'years_experience': None}, {'skill': 'ArcGIS', 'years_experience': None}, {'skill': 'Git', 'years_experience': None}, {'skill': 'Github', 'years_experience': None}, {'skill': 'Java', 'years_experience': None}, {'skill': 'Team Leadership', 'years_experience': None}, {'skill': 'Technical Presentations', 'years_experience': None}, {'skill': 'RStudio', 'years_experience': None}, {'skill': 'TransCAD', 'years_experience': None}, {'skill': 'CUBE', 'years_experience': None}, {'skill': 'STOPS', 'years_experience': None}], 'employment_history': [{'start_date': {'YearMonth': '2011-02'}, 'end_date': {'StringDate': 'current'}, 'position': 'Senior Data Scientist', 'description': '>> Estimation of statistical models using several data sources including but not limited to census data, household travel surveys, mobile phone data, on-board transit surveys. \n>> Develop and implement statistical models by writing code using several software.\n>> Calibration and application of the statistical models for the current conditions.\n>> Forecasting for the future using the calibrated models by changing inputs and other parameters. \n>> Presenting the analyses results or forecasts to concerned parties.\n>> Extensive experience with SAS, R, JAVA, TransCAD, CUBE, Python, ArcGIS, and Microsoft Office.\n>> Project experience in several states in the United States including NY, MA, NJ, PA, MD, DC, VA, CT, NC, FL, TN, GA, MI, KY, OH, NV, LA.\n \n \n …\n \n see more', 'employer_name': 'WSP USA', 'current_employer': True}, {'start_date': {'YearMonth': '2005-04'}, 'end_date': {'YearMonth': '2011-02'}, 'position': 'Data Scientist', 'description': '>> Estimation of statistical models using several data sources including but not limited to census data, household travel surveys, mobile phone data, on-board transit surveys. \n>> Develop and implement statistical models by writing code using several software.\n>> Calibration and application of the statistical models for the current conditions.\n>> Forecasting for the future using the calibrated models by changing inputs and other parameters. \n>> Presenting the analyses results or forecasts to concerned parties.\n>> Extensive experience with SAS, R, JAVA, TransCAD, CUBE, Python, ArcGIS, and Microsoft Office.\n>> Project experience in several states in the United States including NY, MA, NJ, PA, MD, DC, VA, CT, NC, FL, TN, GA, MI, KY, OH, NV, LA\n \n \n …\n \n see more', 'employer_name': 'Parsons Brinckerhoff in the USA (now WSP USA)', 'current_employer': False}, {'start_date': {'YearMonth': '2004-05'}, 'end_date': {'YearMonth': '2005-04'}, 'position': 'Engineer', 'description': '>> Data analyses with Microsoft Access, SPSS for the Hartsfield Jackson Atlanta International Airport', 'employer_name': 'Accura Engineering and Consulting Services, Inc.', 'current_employer': False}, {'start_date': {'YearMonth': '2003-12'}, 'end_date': {'YearMonth': '2004-05'}, 'position': 'Intern', 'description': '>> Analyzed farebox data to present data on transit riders\n>> developed the bus-stop database', 'employer_name': 'Nashville MTA', 'current_employer': False}, {'start_date': {'YearMonth': '2002-08'}, 'end_date': {'YearMonth': '2003-12'}, 'position': 'Graduate Research Assistant', 'description': 'TRAVEL DEMAND MODELING: ACTIVITY ANALYSIS FOR PERSON ALLOCATION AND INTERNET USE\n>> Worked with FORTRAN, MS Access\n \n \n …\n \n see more', 'employer_name': 'Vanderbilt University', 'current_employer': False}], 'education_history': [{'start_date': {'YearMonth': '2002-Jan'}, 'end_date': {'YearMonth': '2004-Jan'}, 'institution_name': 'Vanderbilt University', 'degree_type': 'Transportation Engineering or Systems Analysis', 'degree_major': 'Master of Science - MS', 'degree_attendance': {'StartDate': {'YearMonth': '2002-Jan'}, 'EndDate': {'YearMonth': '2004-Jan'}}}, {'start_date': {'YearMonth': '1998-Jan'}, 'end_date': {'YearMonth': '2002-Jan'}, 'institution_name': 'National Institute of Technology Warangal', 'degree_type': 'Civil Engineering', 'degree_major': 'Bachelor of Technology - BTech', 'degree_attendance': {'StartDate': {'YearMonth': '1998-Jan'}, 'EndDate': {'YearMonth': '2002-Jan'}}}, {'start_date': {'YearMonth': "['2018']-Jan"}, 'end_date': {'YearMonth': "['2018']-Jan"}, 'institution_name': 'North Carolina State University', 'degree_type': 'Creative Writing', 'degree_major': 'Non Degree Student', 'degree_attendance': {'StartDate': {'YearMonth': "['2018']-Jan"}, 'EndDate': {'YearMonth': "['2018']-Jan"}}}], 'achievements': {'achievements': [], 'speaking_events': [], 'patents': [], 'publications': [], 'licenses_and_certifications': []}, 'city': 'Cary', 'state': 'North Carolina', 'country': 'United States'}, {'first_name': 'Jie Grace', 'last_name': 'Zhao, Ph.D. ', 'skills': [{'skill': 'Mathematical Modeling', 'years_experience': None}, {'skill': 'Physics', 'years_experience': None}, {'skill': 'Python', 'years_experience': None}, {'skill': 'Numerical Analysis', 'years_experience': None}, {'skill': 'Microscopy', 'years_experience': None}, {'skill': 'Data Analysis', 'years_experience': None}, {'skill': 'Mathematics', 'years_experience': None}, {'skill': 'Molecular Biology', 'years_experience': None}, {'skill': 'Statistics', 'years_experience': None}, {'skill': 'Science', 'years_experience': None}, {'skill': 'Research', 'years_experience': None}, {'skill': 'Analytical Skills', 'years_experience': None}, {'skill': 'Machine Learning', 'years_experience': None}, {'skill': 'deep learning', 'years_experience': None}, {'skill': 'Tableau', 'years_experience': None}, {'skill': 'R', 'years_experience': None}, {'skill': 'Matlab', 'years_experience': None}, {'skill': 'SQL', 'years_experience': None}, {'skill': 'Microsoft Power BI', 'years_experience': None}, {'skill': 'Azure Databricks', 'years_experience': None}, {'skill': 'Hadoop', 'years_experience': None}, {'skill': 'Scala', 'years_experience': None}, {'skill': 'Image Analysis', 'years_experience': None}, {'skill': 'Biophysics', 'years_experience': None}, {'skill': 'Nonlinear Dynamic', 'years_experience': None}], 'employment_history': [{'start_date': {'YearMonth': '2019-10'}, 'end_date': {'StringDate': 'current'}, 'position': 'Program Manager', 'description': '• Technical host for online programs and webinars with up to 3000 attendees on social media and business meeting platforms.\n• Oversaw registration support for live programs (50-3000 participants) in North America. Led the creation of standard operating procedure for onsite check-in process of both beginner and advanced programs.\n• Recruited and trained volunteers across North America to support program cancellation and transfer requests; shortened customer response time by 5 times.\n• Provided quantitative reports on program engagement, participants demographic and expected turn-out to guide promotion activity.\n \n \n …\n \n see more', 'employer_name': 'Isha Foundation', 'current_employer': True}, {'start_date': {'YearMonth': '2019-05'}, 'end_date': {'YearMonth': '2019-09'}, 'position': 'Senior Data Scientist', 'description': '• Systematically improved core analytical products in Tableau: investigating discrepancy between data sources, normalizing level of detail (LOD) calculations and adding advanced features.\n• Built comprehensive healthcare provider classification model using regular expression, regression modeling, and statistical modeling from unstructured text data. The resulted Scala scripts were incorporated into core data pipeline to create customer facing analytical products.\n \n \n …\n \n see more', 'employer_name': 'Trilliant Health', 'current_employer': False}, {'start_date': {'YearMonth': '2015-12'}, 'end_date': {'YearMonth': '2019-05'}, 'position': 'Data Scientist', 'description': '-Led innovation projects to drive data acquisition; organized cross-departmental team for Innovation Day competition; added speech recognition based lightning control in feature upgrade and resulted in a functional prototype and 2nd place award.\n-Worked extensively on processing high volume of transactional data using SQL and creating models using PySpark in Hadoop.\n-Led project on financial forecast using longitudinal data and multivariate time series analysis resulted in adaptive and precise revenue prediction at day level. Project established business baseline for abnormality detection and was used to increase investor confidence. Project was presented as Aristocrat data insight highlight to the executive board.\n-Built game feature and performance based recommendation engine for new game placement, and assisted product management and game design team in new product creation. \nCreated advanced mathematical model of player response to promotions, conducted clustering analysis of player behavior classification, and optimized business strategies for two million dollars promotion budget. \n-Designed, customized, and automated an advanced Tableau reporting system frequently used for identifying business opportunities, and monitoring field issues. \nPresented data insights and visualizations of intricate analytical results to stakeholders and nontechnical teams on a regular basis.\n-Provided advanced knowledge as a subject matter expert on data visualization; mentored coworkers on data visualization principles and best practices using Tableau and Power BI.\n \n \n …\n \n see more', 'employer_name': 'Aristocrat Leisure Limited', 'current_employer': False}, {'start_date': {'YearMonth': '2013-01'}, 'end_date': {'YearMonth': '2016-12'}, 'position': 'Research Assistant', 'description': '-Built innovative mathematical models that integrate clinical MR imaging to predict tumor drug response and improve early tumor drug resistance detection by up to 100%.\n-Presented findings at prominent \xa0conferences in research field leading to collaboration with other researchers across the world and publication.\n-Led research projects that required communication and collaboration with scientists from multi-disciplinary backgrounds and expertise. \n-Organized and led science outreach programs\xa0domestically and internationally, e.g., Nashville Adventure Science Center TWiSTER (Tennessee Women in Science Technology Engineering and Research) event, Hands-on Research in Complex Systems (Shanghai, China)\n \n \n …\n \n see more', 'employer_name': 'Vanderbilt University', 'current_employer': False}, {'start_date': {'YearMonth': '2010-08'}, 'end_date': {'YearMonth': '2012-12'}, 'position': 'Teaching Assistant', 'description': None, 'employer_name': 'Vanderbilt University', 'current_employer': False}], 'education_history': [{'start_date': {'YearMonth': '2010-Jan'}, 'end_date': {'YearMonth': '2016-Jan'}, 'institution_name': 'Vanderbilt University', 'degree_type': 'Physics', 'degree_major': 'PhD', 'degree_attendance': {'StartDate': {'YearMonth': '2010-Jan'}, 'EndDate': {'YearMonth': '2016-Jan'}}}, {'start_date': {'YearMonth': '2006-Jan'}, 'end_date': {'YearMonth': '2010-Jan'}, 'institution_name': 'Hunan University', 'degree_type': 'Engineering Physics/Applied Physics', 'degree_major': "Bachelor's degree", 'degree_attendance': {'StartDate': {'YearMonth': '2006-Jan'}, 'EndDate': {'YearMonth': '2010-Jan'}}}], 'achievements': {'achievements': [], 'speaking_events': [], 'patents': [], 'publications': [], 'licenses_and_certifications': [{'Name': 'Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization'}, {'Name': 'Neural Networks and Deep Learning'}, {'Name': 'Structuring Machine Learning Projects'}, {'Name': 'Relational Algebra by Jennifer Widom'}, {'Name': 'SQL by Jennifer Widom'}, {'Name': 'Certificate In College Teaching'}, {'Name': 'Machine Learning by Andrew Ng'}]}, 'city': 'Nashville', 'state': 'Tennessee', 'country': 'United States'}, {'first_name': 'Mingrui (Raymond)', 'last_name': 'L.', 'skills': [{'skill': 'Machine Learning', 'years_experience': None}, {'skill': 'Data Mining', 'years_experience': None}, {'skill': 'Databases', 'years_experience': None}, {'skill': 'Data Visualization', 'years_experience': None}, {'skill': 'Statistics', 'years_experience': None}, {'skill': 'Business Intelligence', 'years_experience': None}, {'skill': 'Hadoop', 'years_experience': None}, {'skill': 'Tableau', 'years_experience': None}, {'skill': 'Python (Programming Language)', 'years_experience': None}, {'skill': 'R (Programming Language)', 'years_experience': None}, {'skill': 'Transact-SQL (T-SQL)', 'years_experience': None}, {'skill': 'R', 'years_experience': None}, {'skill': 'SQL', 'years_experience': None}, {'skill': 'Google Analytics', 'years_experience': None}, {'skill': 'Marketing Analytics', 'years_experience': None}], 'employment_history': [{'start_date': {'YearMonth': '2019-01'}, 'end_date': {'StringDate': 'current'}, 'position': 'Data Scientist', 'description': 'End-to-end predictive analytics solution', 'employer_name': 'DataLab USA', 'current_employer': True}, {'start_date': {'YearMonth': '2011-12'}, 'end_date': {'YearMonth': '2016-07'}, 'position': 'Senior Quantitative Analyst', 'description': '▪ Conducted quantitative analysis and data modeling for importing shipments. \n▪ Investigated cargo shortage incidents through quantitative methods.\n▪ Uncovered potential new business and improved internal management rules.\n▪ Led information system upgrade by business rule analysis increasing efficiency by 40%.\n▪ Named Distinguished Analyst in 2013 and 2014.\n \n \n …\n \n see more', 'employer_name': 'China Inspection and Quarantine Technology Center', 'current_employer': False}, {'start_date': {'YearMonth': '2009-06'}, 'end_date': {'YearMonth': '2011-11'}, 'position': 'Business Analyst', 'description': '▪ Analyzed future trading report, weekly status updates, company statistics and industry analysis. \n▪ Presented weekly trading market performance to different stakeholders by analyzing multiple information sources and forecasting upcoming trading trends\n▪ Designed and implemented innovative international business trading model as successful solution to tackle trading bottleneck.\n▪ Established and maintained 12 new long-term client relations in Asian Pacific region. \n▪ Awarded Annual Outstanding Business Analyst in 2010.\n \n \n …\n \n see more', 'employer_name': 'Guangdong Plastics Exchange', 'current_employer': False}], 'education_history': [{'start_date': {'YearMonth': '2017-Jan'}, 'end_date': {'YearMonth': '2018-Jan'}, 'institution_name': 'University of Maryland, College Park', 'degree_type': 'Business Statistics', 'degree_major': 'Master of Science', 'degree_attendance': {'StartDate': {'YearMonth': '2017-Jan'}, 'EndDate': {'YearMonth': '2018-Jan'}}}, {'start_date': {'YearMonth': '2014-Jan'}, 'end_date': {'YearMonth': '2017-Jan'}, 'institution_name': 'Sun Yat-sen University', 'degree_type': 'Finance and Corporate Strategy', 'degree_major': 'Master of Business Administration (M.B.A)', 'degree_attendance': {'StartDate': {'YearMonth': '2014-Jan'}, 'EndDate': {'YearMonth': '2017-Jan'}}}], 'achievements': {'achievements': [], 'speaking_events': [], 'patents': [], 'publications': [], 'licenses_and_certifications': [{'Name': 'AI Workflow: Feature Engineering and Bias Detection'}, {'Name': 'TensorFlow Developer Specialization'}, {'Name': 'Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization'}, {'Name': 'Nerual Networks and Deep Learning'}, {'Name': 'Structuring Machine Learning Projects'}, {'Name': 'Data Scientist with Python Track'}, {'Name': 'Databases and SQL for Data Science'}]}, 'city': 'Germantown', 'state': 'Maryland', 'country': 'United States'}, {'first_name': 'Peng', 'last_name': 'Sun', 'skills': [{'skill': 'Statistics', 'years_experience': None}, {'skill': 'Data Analysis', 'years_experience': None}, {'skill': 'R', 'years_experience': None}], 'employment_history': [{'start_date': {'YearMonth': '2018-06'}, 'end_date': {'StringDate': 'current'}, 'position': 'Lead Data Scientist', 'description': None, 'employer_name': 'Suning USA', 'current_employer': True}, {'start_date': {'YearMonth': '2018-06'}, 'end_date': {'YearMonth': '2020-02'}, 'position': 'Senior Data Scientist', 'description': None, 'employer_name': 'Suning USA', 'current_employer': False}, {'start_date': {'YearMonth': '2017-03'}, 'end_date': {'YearMonth': '2018-04'}, 'position': 'Senior Quantitative Analyst', 'description': None, 'employer_name': 'Freddie Mac', 'current_employer': False}, {'start_date': {'YearMonth': '2016-03'}, 'end_date': {'YearMonth': '2017-03'}, 'position': 'Senior Associate', 'description': None, 'employer_name': 'KPMG US', 'current_employer': False}], 'education_history': [{'start_date': None, 'end_date': None, 'institution_name': 'Peking University', 'degree_type': 'Mathematics', 'degree_major': 'Bachelor of Science - BS', 'degree_attendance': {'StartDate': None, 'EndDate': None}}, {'start_date': None, 'end_date': None, 'institution_name': 'Virginia Tech', 'degree_type': 'Statistics', 'degree_major': 'Doctor of Philosophy - PhD', 'degree_attendance': {'StartDate': None, 'EndDate': None}}, {'start_date': None, 'end_date': None, 'institution_name': 'Western Michigan University', 'degree_type': 'Economics', 'degree_major': 'Master of Arts - MA', 'degree_attendance': {'StartDate': None, 'EndDate': None}}], 'achievements': {'achievements': [], 'speaking_events': [], 'patents': [], 'publications': [], 'licenses_and_certifications': []}, 'city': 'Sunnyvale', 'state': 'California', 'country': 'United States'}, {'first_name': 'Ramya', 'last_name': 'Gowda', 'skills': [{'skill': 'Machine Learning', 'years_experience': None}, {'skill': 'Python', 'years_experience': None}, {'skill': 'Data Analysis', 'years_experience': None}, {'skill': 'Statistics', 'years_experience': None}, {'skill': 'Marketing Strategy', 'years_experience': None}, {'skill': 'Corporate Finance', 'years_experience': None}, {'skill': 'Business Strategy', 'years_experience': None}, {'skill': 'Financial Accounting', 'years_experience': None}, {'skill': 'Requirements Analysis', 'years_experience': None}, {'skill': 'Strategy', 'years_experience': None}, {'skill': 'Programming', 'years_experience': None}, {'skill': 'Software Development', 'years_experience': None}, {'skill': 'Business Analysis', 'years_experience': None}, {'skill': 'Kanban', 'years_experience': None}, {'skill': 'Market Research', 'years_experience': None}, {'skill': 'Financial Analysis', 'years_experience': None}, {'skill': 'Analytics', 'years_experience': None}, {'skill': 'Data Visualization', 'years_experience': None}, {'skill': 'Data Modeling', 'years_experience': None}, {'skill': 'Data Science', 'years_experience': None}, {'skill': 'Analytical Skills', 'years_experience': None}, {'skill': 'Digital Marketing', 'years_experience': None}, {'skill': 'Microsoft Excel', 'years_experience': None}, {'skill': 'Microsoft PowerPoint', 'years_experience': None}, {'skill': 'SQL', 'years_experience': None}, {'skill': 'Microsoft Office', 'years_experience': None}, {'skill': 'Tableau', 'years_experience': None}, {'skill': 'Microsoft Word', 'years_experience': None}, {'skill': 'Jupyter', 'years_experience': None}, {'skill': 'Pandas', 'years_experience': None}, {'skill': 'Seaborn', 'years_experience': None}, {'skill': 'Databases', 'years_experience': None}, {'skill': 'Google Cloud Platform (GCP)', 'years_experience': None}, {'skill': 'Time Series Analysis', 'years_experience': None}, {'skill': 'Japanese Business Culture', 'years_experience': None}, {'skill': 'Exploratory Data Analysis', 'years_experience': None}, {'skill': 'Matplotlib', 'years_experience': None}, {'skill': 'Database Queries', 'years_experience': None}, {'skill': 'Predictive Modeling', 'years_experience': None}, {'skill': 'Data Analytics', 'years_experience': None}], 'employment_history': [{'start_date': {'YearMonth': '2018-12'}, 'end_date': {'StringDate': 'current'}, 'position': 'Data Scientist', 'description': 'Time series forecasting, predictive analytics', 'employer_name': 'Rakuten Americas', 'current_employer': True}, {'start_date': {'YearMonth': '2013-11'}, 'end_date': {'YearMonth': '2016-08'}, 'position': 'Senior Software Engineer', 'description': None, 'employer_name': 'Robert Bosch Engineering and Business Solutions Private limited', 'current_employer': False}, {'start_date': {'YearMonth': '2011-06'}, 'end_date': {'YearMonth': '2013-10'}, 'position': 'Software Engineer', 'description': None, 'employer_name': 'Robert Bosch Engineering and Business Solutions Private limited', 'current_employer': False}, {'start_date': {'YearMonth': '2010-03'}, 'end_date': {'YearMonth': '2011-05'}, 'position': 'Programmer Analyst', 'description': None, 'employer_name': 'Mindtree Ltd.', 'current_employer': False}], 'education_history': [{'start_date': {'YearMonth': '2016-Jan'}, 'end_date': {'YearMonth': '2017-Jan'}, 'institution_name': 'Hitotsubashi University Graduate School of International Corporate Strategy', 'degree_type': 'International Business Strategy', 'degree_major': 'Master of Business Administration (M.B.A.)', 'degree_attendance': {'StartDate': {'YearMonth': '2016-Jan'}, 'EndDate': {'YearMonth': '2017-Jan'}}}, {'start_date': {'YearMonth': '2005-Jan'}, 'end_date': {'YearMonth': '2009-Jan'}, 'institution_name': 'Visvesvaraya Technological University', 'degree_type': 'Electronics and Communications Engineering', 'degree_major': 'Bachelor of Engineering (B.E.)', 'degree_attendance': {'StartDate': {'YearMonth': '2005-Jan'}, 'EndDate': {'YearMonth': '2009-Jan'}}}, {'start_date': {'YearMonth': '1993-Jan'}, 'end_date': {'YearMonth': '2003-Jan'}, 'institution_name': 'Kendriya Vidyalaya', 'degree_type': 'High School/Secondary Diplomas and Certificates', 'degree_major': None, 'degree_attendance': {'StartDate': {'YearMonth': '1993-Jan'}, 'EndDate': {'YearMonth': '2003-Jan'}}}], 'achievements': {'achievements': [{'Description': "Monbukagakusho (MEXT) Young Leader's Programme Scholarship"}], 'speaking_events': [], 'patents': [], 'publications': [], 'licenses_and_certifications': [{'Name': 'Advanced SQL – Window Functions'}, {'Name': 'Advanced SQL for Data Science: Time Series'}, {'Name': 'Advanced SQL for Data Scientists'}, {'Name': 'Python (Basic)'}, {'Name': 'Python (Intermediate)'}, {'Name': 'Introduction to Data science in Python'}, {'Name': 'Machine Learning'}, {'Name': 'Google Cloud Platform Big Data and Machine Learning Fundamentals'}]}, 'city': 'San Francisco Bay Area', 'state': None, 'country': 'United States'}, {'first_name': 'Cooper', 'last_name': 'Smidt', 'skills': [{'skill': 'Python', 'years_experience': None}, {'skill': 'Microsoft Excel', 'years_experience': None}, {'skill': 'Matplotlib', 'years_experience': None}, {'skill': 'Data Visualization', 'years_experience': None}, {'skill': 'Pandas', 'years_experience': None}, {'skill': 'Python (Programming Language)', 'years_experience': None}, {'skill': 'SQL', 'years_experience': None}, {'skill': 'Tableau', 'years_experience': None}, {'skill': 'Public Speaking', 'years_experience': None}, {'skill': 'Scikit-Learn', 'years_experience': None}, {'skill': 'NumPy', 'years_experience': None}], 'employment_history': [{'start_date': {'YearMonth': '2021-07'}, 'end_date': {'StringDate': 'current'}, 'position': 'Senior Consultant', 'description': None, 'employer_name': 'Mammoth Growth', 'current_employer': True}, {'start_date': {'YearMonth': '2019-10'}, 'end_date': {'YearMonth': '2021-07'}, 'position': 'Data Scientist II', 'description': None, 'employer_name': 'BBVA in the USA', 'current_employer': False}, {'start_date': {'YearMonth': '2019-07'}, 'end_date': {'YearMonth': '2019-09'}, 'position': 'LEAP Associate', 'description': None, 'employer_name': 'BBVA in the USA', 'current_employer': False}, {'start_date': {'YearMonth': '2017-08'}, 'end_date': {'YearMonth': '2019-05'}, 'position': 'Student Worker', 'description': None, 'employer_name': 'LSU PERTT Lab', 'current_employer': False}, {'start_date': {'YearMonth': '2018-05'}, 'end_date': {'YearMonth': '2018-08'}, 'position': 'Intern', 'description': 'Performed market research on competition \nVisualized accumulated data in Python', 'employer_name': 'Roywell Services, Inc.', 'current_employer': False}, {'start_date': {'YearMonth': '2018-03'}, 'end_date': {'YearMonth': '2018-05'}, 'position': 'Research Assistant', 'description': 'Assisted in researching how high viscosity silicon fluid affects the operating pressure of a gas lift valve.', 'employer_name': 'Louisiana State University', 'current_employer': False}, {'start_date': {'YearMonth': '2018-03'}, 'end_date': {'YearMonth': '2018-05'}, 'position': 'Student Worker', 'description': None, 'employer_name': 'LSU Petrolem Department', 'current_employer': False}, {'start_date': {'YearMonth': '2018-02'}, 'end_date': {'YearMonth': '2018-05'}, 'position': 'Research Assistant', 'description': None, 'employer_name': 'LSU Petroleum Department', 'current_employer': False}, {'start_date': {'YearMonth': '2018-02'}, 'end_date': {'YearMonth': '2018-05'}, 'position': 'Student Worker', 'description': None, 'employer_name': 'LSU Petroleum Department', 'current_employer': False}, {'start_date': {'YearMonth': "['Feb 2018']-Jan"}, 'end_date': {'YearMonth': "['Feb 2018']-Jan"}, 'position': 'Attendee', 'description': None, 'employer_name': 'SPE-IADC Drilling Conference', 'current_employer': False}, {'start_date': {'YearMonth': '2017-Jan'}, 'end_date': {'YearMonth': '2018-Jan'}, 'position': 'Intern', 'description': 'Constructed wellbore diagrams of Permian Basin assets\nCreated drilling and completion reports \nReviewed daily production on IHS field direct \nCreated diagrams of production facilities\n \n \n …\n \n see more', 'employer_name': 'Fortuna Resources', 'current_employer': False}], 'education_history': [{'start_date': {'YearMonth': '2014-Jan'}, 'end_date': {'YearMonth': '2019-Jan'}, 'institution_name': 'Louisiana State University', 'degree_type': 'Petroleum Engineering', 'degree_major': "Bachelor's degree", 'degree_attendance': {'StartDate': {'YearMonth': '2014-Jan'}, 'EndDate': {'YearMonth': '2019-Jan'}}}, {'start_date': {'YearMonth': '2018-Jan'}, 'end_date': {'YearMonth': '2018-Jan'}, 'institution_name': 'Codecademy', 'degree_type': 'Python', 'degree_major': None, 'degree_attendance': {'StartDate': {'YearMonth': '2018-Jan'}, 'EndDate': {'YearMonth': '2018-Jan'}}}, {'start_date': {'YearMonth': '2011-Jan'}, 'end_date': {'YearMonth': '2014-Jan'}, 'institution_name': 'Strake Jesuit College Preparatory', 'degree_type': None, 'degree_major': None, 'degree_attendance': {'StartDate': {'YearMonth': '2011-Jan'}, 'EndDate': {'YearMonth': '2014-Jan'}}}, {'start_date': None, 'end_date': None, 'institution_name': 'Louisiana State University', 'degree_type': 'Minor in Buisness Energy', 'degree_major': None, 'degree_attendance': {'StartDate': None, 'EndDate': None}}], 'achievements': {'achievements': [], 'speaking_events': [], 'patents': [], 'publications': [], 'licenses_and_certifications': []}, 'city': 'Houston', 'state': 'Texas', 'country': 'United States'}]